Vai al contenuto principale della pagina

Fundamentals of communication systems / / John G. Proakis, Masoud Salehi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Proakis John G. Visualizza persona
Titolo: Fundamentals of communication systems / / John G. Proakis, Masoud Salehi Visualizza cluster
Pubblicazione: Boston : , : Pearson, , 2014
Edizione: Second edition, global edition.
Descrizione fisica: 1 online resource (929 pages) : illustrations
Disciplina: 621.382
Soggetto topico: Telecommunication systems
Persona (resp. second.): SalehiMasoud
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title -- Copyright -- Contents -- Preface -- 1 Introduction -- 1.1 Historical Review -- 1.2 Elements of an Electrical Communication System -- 1.2.1 Digital Communication System -- 1.2.2 Early Work in Digital Communications -- 1.3 Communication Channels and Their Characteristics -- 1.4 Mathematical Models for Communication Channels -- 1.5 Summary and Further Reading -- 2 Signals and Linear Systems -- 2.1 Basic Concepts -- 2.1.1 Basic Operations on Signals -- 2.1.2 Classification of Signals -- 2.1.3 Some Important Signals and Their Properties -- 2.1.4 Classification of Systems -- 2.1.5 Analysis of LTI Systems in the Time Domain -- 2.2 Fourier Series -- 2.2.1 Fourier Series and Its Properties -- 2.2.2 Response of LTI Systems to Periodic Signals -- 2.2.3 Parseval's Relation -- 2.3 Fourier Transform -- 2.3.1 From Fourier Series to Fourier Transforms -- 2.3.2 Basic Properties of the Fourier Transform -- 2.3.3 Fourier Transform for Periodic Signals -- 2.3.4 Transmission over LTI Systems -- 2.4 Filter Design -- 2.5 Power and Energy -- 2.5.1 Energy-Type Signals -- 2.5.2 Power-Type Signals -- 2.6 Hilbert Transform and Its Properties -- 2.7 Lowpass and Bandpass Signals -- 2.8 Summary and Further Reading -- Problems -- 3 Amplitude Modulation -- 3.1 Introduction to Modulation -- 3.2 Amplitude Modulation -- 3.2.1 Double-Sideband Suppressed-Carrier AM -- 3.2.2 Conventional Amplitude Modulation -- 3.2.3 Single-Sideband AM -- 3.2.4 Vestigial-Sideband AM -- 3.3 Implementation of Amplitude Modulators and Demodulators -- 3.4 Signal Multiplexing -- 3.4.1 Frequency-Division Multiplexing -- 3.4.2 Quadrature-Carrier Multiplexing -- 3.5 AM Radio Broadcasting -- 3.6 Summary and Further Reading -- Appendix 3A: Derivation of the Expression for SSB-AM Signals -- Problems -- 4 Angle Modulation -- 4.1 Representation of FM and PM Signals.
4.2 Spectral Characteristics of Angle-Modulated Signals -- 4.2.1 Angle Modulation by a Sinusoidal Signal -- 4.2.2 Angle Modulation by an Arbitrary Message Signal -- 4.3 Implementation of Angle Modulators and Demodulators -- 4.4 FM Radio Broadcasting -- 4.5 Summary and Further Reading -- Problems -- 5 Probability and Random Processes -- 5.1 Review of Probability and Random Variables -- 5.1.1 Sample Space, Events, and Probability -- 5.1.2 Conditional Probability -- 5.1.3 Random Variables -- 5.1.4 Functions of a Random Variable -- 5.1.5 Multiple Random Variables -- 5.1.6 Sums of Random Variables -- 5.2 Random Processes: Basic Concepts -- 5.2.1 Statistical Averages -- 5.2.2 Wide-Sense Stationary Processes -- 5.2.3 Multiple Random Processes -- 5.2.4 Random Processes and Linear Systems -- 5.2.5 Power Spectral Density of Stationary Processes -- 5.2.6 Power Spectral Density of a Sum Process -- 5.3 Gaussian and White Processes -- 5.3.1 Gaussian Processes -- 5.3.2 White Processes -- 5.3.3 Filtered Noise Processes -- 5.4 Summary and Further Reading -- Problems -- 6 Effect of Noise on Analog Communication Systems -- 6.1 Effect of Noise on Amplitude Modulation Systems -- 6.1.1 Effect of Noise on a Baseband System -- 6.1.2 Effect of Noise on DSB-SC AM -- 6.1.3 Effect of Noise on SSB AM -- 6.1.4 Effect of Noise on Conventional AM -- 6.2 Effect of Noise on Angle Modulation -- 6.2.1 Threshold Effect in Angle Modulation -- 6.2.2 Preemphasis and Deemphasis Filtering for FM -- 6.3 Comparison of Analog-Modulation Systems -- 6.4 Effects of Transmission Losses and Noise in Analog Communication Systems -- 6.4.1 Characterization of Thermal Noise Sources -- 6.4.2 Effective Noise Temperature and Noise Figure -- 6.4.3 Transmission Losses -- 6.4.4 Repeaters for Signal Transmission -- 6.5 Summary and Further Reading -- Problems -- 7 Analog-to-Digital Conversion.
7.1 Sampling of Signals and Signal Reconstruction from Samples -- 7.1.1 The Sampling Theorem -- 7.2 Quantization -- 7.2.1 Scalar Quantization -- 7.2.2 Vector Quantization -- 7.3 Encoding -- 7.4 Waveform Coding -- 7.4.1 Pulse Code Modulation -- 7.4.2 Differential Pulse Code Modulation -- 7.4.3 Delta Modulation -- 7.5 Analysis-Synthesis Techniques -- 7.6 Digital Audio Transmission and Digital Audio Recording -- 7.6.1 Digital Audio in Telephone Transmission Systems -- 7.6.2 Digital Audio Recording -- 7.7 The JPEG Image-Coding Standard -- 7.8 Summary and Further Reading -- Problems -- 8 Digital Modulation Methods in an Additive White Gaussian Noise Channel -- 8.1 Geometric Representation of Signal Waveforms -- 8.2 Binary Modulation Schemes -- 8.2.1 Binary Antipodal Signaling -- 8.2.2 Binary Orthogonal Signaling -- 8.3 Optimum Receiver for Binary Modulated Signals in Additive White Gaussian Noise -- 8.3.1 Correlation-Type Demodulator -- 8.3.2 Matched-Filter-Type Demodulator -- 8.3.3 The Performance of the Optimum Detector for Binary Signals -- 8.4 M-ary Digital Modulation -- 8.4.1 The Optimum Receiver for M-ary Signals in AWGN -- 8.4.2 A Union Bound on the Probability of Error -- 8.5 M-ary Pulse Amplitude Modulation -- 8.5.1 Carrier-Modulated PAM for Bandpass Channels (M-ary ASK) -- 8.5.2 Demodulation and Detection of Amplitude-Modulated PAM Signals -- 8.5.3 Probability of Error for M-ary PAM -- 8.6 Phase-Shift Keying -- 8.6.1 Geometric Representation of PSK Signals -- 8.6.2 Demodulation and Detection of PSK Signals -- 8.6.3 Probability of Error for Phase-Coherent PSK Modulation -- 8.6.4 Differential Phase Encoding and Differential Phase Modulation and Demodulation -- 8.6.5 Probability of Error for DPSK -- 8.7 Quadrature Amplitude-Modulated Digital Signals -- 8.7.1 Geometric Representation of QAM Signals -- 8.7.2 Demodulation and Detection of QAM Signals.
8.7.3 Probability of Error for QAM -- 8.8 Carrier-Phase Estimation -- 8.8.1 The Phase-Locked Loop -- 8.8.2 The Costas Loop -- 8.8.3 Carrier-Phase Estimation for PAM -- 8.8.4 Carrier-Phase Estimation for PSK -- 8.8.5 Carrier-Phase Estimation for QAM -- 8.9 Symbol Synchronization -- 8.9.1 Early-Late Gate Synchronizers -- 8.9.2 Minimum Mean Square Error Method -- 8.9.3 Maximum-Likelihood Method -- 8.9.4 Spectral-Line Method -- 8.9.5 Symbol Synchronization for Carrier-Modulated Signals -- 8.10 Regenerative Repeaters -- 8.11 Summary and Further Reading -- Problems -- 9 Multidimensional Digital Modulation -- 9.1 M-ary Orthogonal Signals -- 9.1.1 Probability of Error for M-ary Orthogonal Signals -- 9.1.2 A Union Bound on the Error Probability of M-ary Orthogonal Signals -- 9.2 Biorthogonal Signals -- 9.2.1 Probability of Error for M-ary Biorthogonal Signals -- 9.3 Simplex Signals -- 9.3.1 Probability of Error for M-ary Simplex Signals -- 9.4 Binary-Coded Signals -- 9.4.1 Probability of Error for Binary-Coded Signals -- 9.5 Frequency-Shift Keying -- 9.5.1 Demodulation of M-ary FSK -- 9.5.2 Optimum Detector for Noncoherent Binary FSK -- 9.5.3 Probability of Error for Noncoherent Detection of M-ary FSK -- 9.6 Modulation Systems with Memory -- 9.6.1 Continuous-Phase FSK -- 9.6.2 Spectral Characteristics of CPFSK Signals -- 9.7 Comparison of Modulation Methods -- 9.8 Summary and Further Reading -- Problems -- 10 Digital Transmission Through Bandlimited AWGN Channels -- 10.1 Characterization of Bandlimited Channels and Signal Distortion -- 10.1.1 Intersymbol Interference in Signal Transmission -- 10.1.2 Digital Transmission through Bandlimited Bandpass Channels -- 10.2 The Power Spectrum of Digitally Modulated Signals -- 10.3 Signal Design for Bandlimited Channels -- 10.3.1 Design of Bandlimited Signals for Zero ISI-The NyquistCriterion.
10.3.2 Design of Bandlimited Signals with Controlled ISI-Partial-Response Signals -- 10.4 Detection of Partial-Response Signals -- 10.4.1 Symbol-by-Symbol Detection -- 10.4.2 Probability of Error for Symbol-by-Symbol Detection -- 10.4.3 Maximum-Likelihood Sequence Detection of Partial-Response Signals -- 10.4.4 Error Probability of the Maximum-Likelihood Sequence Detector -- 10.5 System Design in the Presence of Channel Distortion -- 10.5.1 Design of Transmitting and Receiving Filters for a Known Channel -- 10.5.2 Channel Equalization -- 10.6 Summary and Further Reading -- Appendix 10A: Power Spectrum of Modulated Signals -- 10A.1 The Power Spectrum of the Baseband Signal -- 10A.2 The Power Spectrum of the Carrier Modulated Signals -- Problems -- 11 Multicarrier Modulation and OFDM -- 11.1 Orthogonal Frequency-Division Multiplexing -- 11.2 Modulation and Demodulation in an OFDM System -- 11.3 An OFDM System Implemented via the FFT Algorithm -- 11.4 Spectral Characteristics of OFDM Signals -- 11.5 Peak-to-Average Power Ratio in OFDM Systems -- 11.6 Applications of OFDM -- 11.6.1 Digital Subscriber Lines -- 11.6.2 Wireless LANs -- 11.6.3 Digital Audio Broadcasting -- 11.7 Summary and Further Reading -- Problems -- 12 An Introduction to Information Theory -- 12.1 Modeling Information Sources -- 12.1.1 Measure of Information -- 12.1.2 Joint and Conditional Entropy -- 12.1.3 Mutual Information -- 12.1.4 Differential Entropy -- 12.2 The Source Coding Theorem -- 12.3 Source Coding Algorithms -- 12.3.1 The Huffman Source Coding Algorithm -- 12.3.2 The Lempel-Ziv Source Coding Algorithm -- 12.4 Modeling of Communication Channels -- 12.5 Channel Capacity -- 12.5.1 Gaussian Channel Capacity -- 12.6 Bounds on Communication -- 12.7 Summary and Further Reading -- Problems -- 13 Coding for Reliable Communications -- 13.1 The Promise of Coding.
13.2 Linear Block Codes.
Sommario/riassunto: For one- or two-semester, senior-level undergraduate courses in Communication Systems for Electrical and Computer Engineering majors. This text introduces the basic techniques used in modern communication systems and provides fundamental tools and methodologies used in the analysis and design of these systems. The authors emphasize digital communication systems, including new generations of wireless communication systems, satellite communications, and data transmission networks. A background in calculus, linear algebra, basic electronic circuits, linear system theory, and probability and random variables is assumed.
Titolo autorizzato: Fundamentals of communication systems  Visualizza cluster
ISBN: 1-292-01569-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910151569703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Always learning.